Publications#

  1. Hyowon W. Jeong, Akhil Ajay, Markus Döblinger, Sebastian Sturm, Mikel Gómez Ruiz, Richard Zell, Nitin Mukhundhan, Daniel Stelzner, Jonas Lähnemann, Knut Müller-Caspary, Jonathan J. Finley, and Gregor Koblmüller. Axial Growth Characteristics of Optically Active InGaAs Nanowire Heterostructures for Integrated Nanophotonic Devices. ACS Appl. Nano Mater., pages tbd, January 2024. doi:10.1021/acsanm.3c05392.

  2. P. John, M. Gómez Ruiz, L. Van Deurzen, J. Lähnemann, A Trampert, L. Geelhaar, O. Brandt, and T. Auzelle. Growth kinetics and substrate stability during high-temperature molecular beam epitaxy of AlN nanowires. Nanotechnology, 34(46):465605, November 2023. arXiv:2306.09184, doi:10.1088/1361-6528/acefd8.

  3. L. Van Deurzen, J. Singhal, J. Encomendero, N. Pieczulewski, C. S. Chang, Y. Cho, D. A. Muller, H. G. Xing, D. Jena, O. Brandt, and J. Lähnemann. Excitonic and deep-level emission from N- and Al-polar homoepitaxial AlN grown by molecular beam epitaxy. APL Mater., 11(8):081109, August 2023. arXiv:2305.10542, doi:10.1063/5.0158390.

Selection of older CL-publications from PDI

  • David Van Treeck, Jonas Lähnemann, Guanhui Gao, Sergio Fernández Garrido, Oliver Brandt, and Lutz Geelhaar. Sequential directional deposition of one-sided (In,Ga)N shells on GaN nanowires by molecular beam epitaxy. APL Mater., 11(9):091120, September 2023. arXiv:2307.11235, doi:10.1063/5.0168786.

  • Oliver Brandt, Vladimir M. Kaganer, Jonas Lähnemann, Timur Flissikowski, Carsten Pfüller, Karl K. Sabelfeld, Anastasya E. Kireeva, Caroline Chèze, Raffaella Calarco, Holger T. Grahn, and Uwe Jahn. Carrier Diffusion in GaN: A Cathodoluminescence Study. II. Ambipolar versus Exciton Diffusion. Phys. Rev. Applied, 17(2):024018, February 2022. arXiv:2009.13983, doi:10.1103/PhysRevApplied.17.024018.

  • Uwe Jahn, Vladimir M. Kaganer, Karl K. Sabelfeld, Anastasya E. Kireeva, Jonas Lähnemann, Carsten Pfüller, Timur Flissikowski, Caroline Chèze, Klaus Biermann, Raffaella Calarco, and Oliver Brandt. Carrier Diffusion in GaN: A Cathodoluminescence Study. I. Temperature-Dependent Generation Volume. Phys. Rev. Applied, 17(2):024017, February 2022. arXiv:2002.08713, doi:10.1103/PhysRevApplied.17.024017.

  • Jonas Lähnemann, Vladimir M. Kaganer, Karl K. Sabelfeld, Anastasya E. Kireeva, Uwe Jahn, Caroline Chèze, Raffaella Calarco, and Oliver Brandt. Carrier Diffusion in GaN: A Cathodoluminescence Study. III. Nature of Nonradiative Recombination at Threading Dislocations. Phys. Rev. Applied, 17(2):024019, February 2022. arXiv:2009.14634, doi:10.1103/PhysRevApplied.17.024019.

  • Len van Deurzen, Mikel Gómez Ruiz, Kevin Lee, Henryk Turski, Shyam Bharadwaj, Ryan Page, Vladimir Protasenko, Huili Grace Xing, Jonas Lähnemann, and Debdeep Jena. Dislocation and Indium Droplet Related Emission Inhomogeneities in InGaN LEDs. J. Phys. D: Appl. Phys., 54(49):495106, September 2021. arXiv:2106.10809, doi:10.1088/1361-6463/ac2446.

  • Mani Azadmand, Thomas Auzelle, Jonas Lähnemann, Guanhui Gao, Lars Nicolai, Manfred Ramsteiner, Achim Trampert, Stefano Sanguinetti, Oliver Brandt, and Lutz Geelhaar. Self-Assembly of Well-Separated AlN Nanowires Directly on Sputtered Metallic TiN Films. Phys. Status Solidi RRL, pages 1900615, January 2020. arXiv:1910.07391, doi:10.1002/pssr.201900615.

  • Vladimir M. Kaganer, Jonas Lähnemann, Carsten Pfüller, Karl K. Sabelfeld, Anastasya E. Kireeva, and Oliver Brandt. Determination of the Carrier Diffusion Length in GaN from Cathodoluminescence Maps Around Threading Dislocations: Fallacies and Opportunities. Phys. Rev. Appl., 12(5):054038, November 2019. arXiv:1906.05645, doi:10.1103/PhysRevApplied.12.054038.

  • Jonas Lähnemann, Megan O. Hill, Jesús Herranz, Oliver Marquardt, Guanhui Gao, Ali Al Hassan, Arman Davtyan, Stephan O. Hruszkewycz, Martin V. Holt, Chunyi Huang, Irene Calvo-Almazán, Uwe Jahn, Ullrich Pietsch, Lincoln J. Lauhon, and Lutz Geelhaar. Correlated Nanoscale Analysis of the Emission from Wurtzite versus Zincblende (In,Ga)As/GaAs Nanowire Core–Shell Quantum Wells. Nano Lett., 19(7):4448–4457, July 2019. arXiv:1903.07372, doi:10.1021/acs.nanolett.9b01241.

  • A. Hernández-Mínguez, J. Lähnemann, S. Nakhaie, J. M. J. Lopes, and P. V. Santos. Luminescent Defects in a Few-Layer h-BN Film Grown by Molecular Beam Epitaxy. Phys. Rev. Appl., October 2018. arXiv:1902.08528, doi:10.1103/PhysRevApplied.10.044031.

  • Jonas Lähnemann, Pierre Corfdir, Felix Feix, Jumpei Kamimura, Timur Flissikowski, Holger T. Grahn, Lutz Geelhaar, and and Oliver Brandt. Radial Stark effect in (In,Ga)N nanowires. Nano Lett., 16(2):917–925, January 2016. arXiv:1601.07201, doi:10.1021/acs.nanolett.5b03748.

  • Jonas Lähnemann, Timur Flissikowski, Martin Wölz, Lutz Geelhaar, Holger T. Grahn, Oliver Brandt, and Uwe Jahn. Quenching of the luminescence intensity of GaN nanowires under electron beam exposure: impact of C adsorption on the exciton lifetime. Nanotechnology, 27(45):455706, 2016. arXiv:1607.03397, doi:10.1088/0957-4484/27/45/455706.

  • Jonas Lähnemann, Uwe Jahn, Oliver Brandt, Timur Flissikowski, Pinar Dogan, and Holger T. Grahn. Luminescence associated with stacking faults in GaN (topical review). J. Phys. D: Appl. Phys., 47(42):423001, October 2014. arXiv:1405.1261, doi:10.1088/0022-3727/47/42/423001.

  • Benjamin Wilsch, Uwe Jahn, Bernd Jenichen, Jonas Lähnemann, Holger T. Grahn, Hui Wang, and Hui Yang. Spatially resolved investigation of strain and composition variations in (In,Ga)N/GaN epilayers. Appl. Phys. Lett., 102(5):052109, 2013. arXiv:1301.4138, doi:10.1063/1.4790591.

  • Friederich Limbach, Christian Hauswald, Jonas Lähnemann, Martin Wölz, Oliver Brandt, Achim Trampert, Michael Hanke, Uwe Jahn, Raffaella Calarco, Lutz Geelhaar, and Henning Riechert. Current path in light emitting diodes based on nanowire ensembles. Nanotechnology, 23(46):465301, November 2012. arXiv:1210.7144, doi:10.1088/0957-4484/23/46/465301.

  • Uwe Jahn, Jonas Lähnemann, Carsten Pfüller, Oliver Brandt, Steffen Breuer, Bernd Jenichen, Manfred Ramsteiner, Lutz Geelhaar, and Henning Riechert. Luminescence of GaAs nanowires consisting of wurtzite and zinc-blende segments. Phys. Rev. B, 85(4):045323, January 2012. arXiv:1201.6540, doi:10.1103/PhysRevB.85.045323.

  • Jonas Lähnemann, Oliver Brandt, Uwe Jahn, Carsten Pfüller, Claudia Roder, Pinar Dogan, Frank Grosse, Abderrezak Belabbes, Friedhelm Bechstedt, Achim Trampert, and Lutz Geelhaar. Direct experimental determination of the spontaneous polarization of GaN. Phys. Rev. B, 86(8):081302(R), January 2012. arXiv:1201.4294, doi:10.1103/PhysRevB.86.081302.

  • Jonas Lähnemann, Oliver Brandt, Carsten Pfüller, Timur Flissikowski, Uwe Jahn, Esperanza Luna, Michael Hanke, Matthias Knelangen, Achim Trampert, and Holger T. Grahn. Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure. Phys. Rev. B, 84(15):155303, September 2011. arXiv:1109.6039, doi:10.1103/PhysRevB.84.155303.

  • W. Bergbauer, M. Strassburg, C. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H-H Wehmann, and A. Waag. Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells. Nanotechnology, 21(30):305201, 2010. doi:10.1088/0957-4484/21/30/305201.

  • U. Jahn, O. Brandt, E. Luna, X. Sun, H. Wang, D. S. Jiang, L. F. Bian, and H. Yang. Carrier capture by threading dislocations in (In,Ga)N/GaN heteroepitaxial layers. Phys. Rev. B, 81(12):125314, 2010. doi:10.1103/PhysRevB.81.125314.

  • Uwe Jahn, Jelena Ristić, and Enrique Calleja. Cathodoluminescence spectroscopy and imaging of GaN/(Al,Ga)N nanocolumns containing quantum disks. Appl. Phys. Lett., 90(16):161117, 2007. doi:10.1063/1.2724913.

  • U. Jahn, S. Dhar, R. Hey, O. Brandt, J. Miguel-Sánchez, and A. Guzmán. Influence of localization on the carrier diffusion in GaAs/(Al,Ga)As and (In,Ga)(As,N)/GaAs quantum wells: A comparative study. Phys. Rev. B, 73(12):125303, 2006. doi:10.1103/PhysRevB.73.125303.

  • J. Menniger, U. Jahn, O. Brandt, H. Yang, and K. Ploog. Identification of optical transitions in cubic and hexagonal GaN by spatially resolved cathodoluminescence. Phys. Rev. B, 53(4):1881, 1996. doi:10.1103/PhysRevB.53.1881.